3.120 \(\int \frac{\sec (e+f x) (a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{7/2}} \, dx\)

Optimal. Leaf size=88 \[ -\frac{\tan (e+f x) (a \sec (e+f x)+a)^{3/2}}{24 c f (c-c \sec (e+f x))^{5/2}}-\frac{\tan (e+f x) (a \sec (e+f x)+a)^{3/2}}{6 f (c-c \sec (e+f x))^{7/2}} \]

[Out]

-((a + a*Sec[e + f*x])^(3/2)*Tan[e + f*x])/(6*f*(c - c*Sec[e + f*x])^(7/2)) - ((a + a*Sec[e + f*x])^(3/2)*Tan[
e + f*x])/(24*c*f*(c - c*Sec[e + f*x])^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.300941, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.056, Rules used = {3951, 3950} \[ -\frac{\tan (e+f x) (a \sec (e+f x)+a)^{3/2}}{24 c f (c-c \sec (e+f x))^{5/2}}-\frac{\tan (e+f x) (a \sec (e+f x)+a)^{3/2}}{6 f (c-c \sec (e+f x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(a + a*Sec[e + f*x])^(3/2))/(c - c*Sec[e + f*x])^(7/2),x]

[Out]

-((a + a*Sec[e + f*x])^(3/2)*Tan[e + f*x])/(6*f*(c - c*Sec[e + f*x])^(7/2)) - ((a + a*Sec[e + f*x])^(3/2)*Tan[
e + f*x])/(24*c*f*(c - c*Sec[e + f*x])^(5/2))

Rule 3951

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n)/(a*f*(2*m + 1)), x] +
 Dist[(m + n + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[m + n + 1, 0] && NeQ[2
*m + 1, 0] &&  !LtQ[n, 0] &&  !(IGtQ[n + 1/2, 0] && LtQ[n + 1/2, -(m + n)])

Rule 3950

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n)/(a*f*(2*m + 1)), x] /
; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[2*m
 + 1, 0]

Rubi steps

\begin{align*} \int \frac{\sec (e+f x) (a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{7/2}} \, dx &=-\frac{(a+a \sec (e+f x))^{3/2} \tan (e+f x)}{6 f (c-c \sec (e+f x))^{7/2}}+\frac{\int \frac{\sec (e+f x) (a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{5/2}} \, dx}{6 c}\\ &=-\frac{(a+a \sec (e+f x))^{3/2} \tan (e+f x)}{6 f (c-c \sec (e+f x))^{7/2}}-\frac{(a+a \sec (e+f x))^{3/2} \tan (e+f x)}{24 c f (c-c \sec (e+f x))^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.553457, size = 80, normalized size = 0.91 \[ \frac{a (3 \cos (e+f x)-3 \cos (2 (e+f x))-4) \tan \left (\frac{1}{2} (e+f x)\right ) \sqrt{a (\sec (e+f x)+1)}}{6 c^3 f (\cos (e+f x)-1)^3 \sqrt{c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(a + a*Sec[e + f*x])^(3/2))/(c - c*Sec[e + f*x])^(7/2),x]

[Out]

(a*(-4 + 3*Cos[e + f*x] - 3*Cos[2*(e + f*x)])*Sqrt[a*(1 + Sec[e + f*x])]*Tan[(e + f*x)/2])/(6*c^3*f*(-1 + Cos[
e + f*x])^3*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.283, size = 83, normalized size = 0.9 \begin{align*}{\frac{a \left ( 5\,\cos \left ( fx+e \right ) -1 \right ) \left ( \sin \left ( fx+e \right ) \right ) ^{3}}{24\,f \left ( -1+\cos \left ( fx+e \right ) \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{3}}\sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}} \left ({\frac{c \left ( -1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }} \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(7/2),x)

[Out]

1/24/f*a*(5*cos(f*x+e)-1)*sin(f*x+e)^3*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)/(-1+cos(f*x+e))/cos(f*x+e)^3/(c*(
-1+cos(f*x+e))/cos(f*x+e))^(7/2)

________________________________________________________________________________________

Maxima [B]  time = 4.4234, size = 2105, normalized size = 23.92 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

2/3*(3*(a*sin(4*f*x + 4*e) + a*sin(2*f*x + 2*e))*cos(6*f*x + 6*e) + 3*(a*sin(6*f*x + 6*e) + 9*a*sin(4*f*x + 4*
e) + 9*a*sin(2*f*x + 2*e) - 4*a*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*cos(5/2*arctan2(sin(2*f*
x + 2*e), cos(2*f*x + 2*e))) + 4*(2*a*sin(6*f*x + 6*e) + 15*a*sin(4*f*x + 4*e) + 15*a*sin(2*f*x + 2*e) + 3*a*s
in(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 3*
(a*sin(6*f*x + 6*e) + 9*a*sin(4*f*x + 4*e) + 9*a*sin(2*f*x + 2*e))*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x
 + 2*e))) - 3*(a*cos(4*f*x + 4*e) + a*cos(2*f*x + 2*e))*sin(6*f*x + 6*e) + 3*a*sin(4*f*x + 4*e) + 3*a*sin(2*f*
x + 2*e) - 3*(a*cos(6*f*x + 6*e) + 9*a*cos(4*f*x + 4*e) + 9*a*cos(2*f*x + 2*e) - 4*a*cos(3/2*arctan2(sin(2*f*x
 + 2*e), cos(2*f*x + 2*e))) + a)*sin(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 4*(2*a*cos(6*f*x + 6*e
) + 15*a*cos(4*f*x + 4*e) + 15*a*cos(2*f*x + 2*e) + 3*a*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) +
 2*a)*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 3*(a*cos(6*f*x + 6*e) + 9*a*cos(4*f*x + 4*e) + 9*
a*cos(2*f*x + 2*e) + a)*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*sqrt(a)*sqrt(c)/((c^4*cos(6*f*x
+ 6*e)^2 + 225*c^4*cos(4*f*x + 4*e)^2 + 225*c^4*cos(2*f*x + 2*e)^2 + 36*c^4*cos(5/2*arctan2(sin(2*f*x + 2*e),
cos(2*f*x + 2*e)))^2 + 400*c^4*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 36*c^4*cos(1/2*arctan2
(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + c^4*sin(6*f*x + 6*e)^2 + 225*c^4*sin(4*f*x + 4*e)^2 + 450*c^4*sin(4*
f*x + 4*e)*sin(2*f*x + 2*e) + 225*c^4*sin(2*f*x + 2*e)^2 + 36*c^4*sin(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x
+ 2*e)))^2 + 400*c^4*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 36*c^4*sin(1/2*arctan2(sin(2*f*x
 + 2*e), cos(2*f*x + 2*e)))^2 + 30*c^4*cos(2*f*x + 2*e) + c^4 + 2*(15*c^4*cos(4*f*x + 4*e) + 15*c^4*cos(2*f*x
+ 2*e) + c^4)*cos(6*f*x + 6*e) + 30*(15*c^4*cos(2*f*x + 2*e) + c^4)*cos(4*f*x + 4*e) - 12*(c^4*cos(6*f*x + 6*e
) + 15*c^4*cos(4*f*x + 4*e) + 15*c^4*cos(2*f*x + 2*e) - 20*c^4*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2
*e))) - 6*c^4*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + c^4)*cos(5/2*arctan2(sin(2*f*x + 2*e), co
s(2*f*x + 2*e))) - 40*(c^4*cos(6*f*x + 6*e) + 15*c^4*cos(4*f*x + 4*e) + 15*c^4*cos(2*f*x + 2*e) - 6*c^4*cos(1/
2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + c^4)*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 1
2*(c^4*cos(6*f*x + 6*e) + 15*c^4*cos(4*f*x + 4*e) + 15*c^4*cos(2*f*x + 2*e) + c^4)*cos(1/2*arctan2(sin(2*f*x +
 2*e), cos(2*f*x + 2*e))) + 30*(c^4*sin(4*f*x + 4*e) + c^4*sin(2*f*x + 2*e))*sin(6*f*x + 6*e) - 12*(c^4*sin(6*
f*x + 6*e) + 15*c^4*sin(4*f*x + 4*e) + 15*c^4*sin(2*f*x + 2*e) - 20*c^4*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(
2*f*x + 2*e))) - 6*c^4*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*sin(5/2*arctan2(sin(2*f*x + 2*e),
 cos(2*f*x + 2*e))) - 40*(c^4*sin(6*f*x + 6*e) + 15*c^4*sin(4*f*x + 4*e) + 15*c^4*sin(2*f*x + 2*e) - 6*c^4*sin
(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 12*(
c^4*sin(6*f*x + 6*e) + 15*c^4*sin(4*f*x + 4*e) + 15*c^4*sin(2*f*x + 2*e))*sin(1/2*arctan2(sin(2*f*x + 2*e), co
s(2*f*x + 2*e))))*f)

________________________________________________________________________________________

Fricas [A]  time = 0.482839, size = 321, normalized size = 3.65 \begin{align*} \frac{{\left (6 \, a \cos \left (f x + e\right )^{3} - 3 \, a \cos \left (f x + e\right )^{2} + a \cos \left (f x + e\right )\right )} \sqrt{\frac{a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt{\frac{c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}}}{6 \,{\left (c^{4} f \cos \left (f x + e\right )^{3} - 3 \, c^{4} f \cos \left (f x + e\right )^{2} + 3 \, c^{4} f \cos \left (f x + e\right ) - c^{4} f\right )} \sin \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

1/6*(6*a*cos(f*x + e)^3 - 3*a*cos(f*x + e)^2 + a*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c
*cos(f*x + e) - c)/cos(f*x + e))/((c^4*f*cos(f*x + e)^3 - 3*c^4*f*cos(f*x + e)^2 + 3*c^4*f*cos(f*x + e) - c^4*
f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))**(3/2)/(c-c*sec(f*x+e))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(7/2),x, algorithm="giac")

[Out]

Timed out